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Biological organisms have intrinsic control systems that act in response to internal and external stimuli maintaining homeostasis.
Human heart rate is not regular and varies in time and such variability, also known as heart rate variability (HRV), is not random.
HRV depends upon organism’s physiologic and/or pathologic state. Physicians are always interested in predicting patient’s risk of
developing major and life-threatening complications. Understanding biological signals behavior helps to characterize patient’s state
and might represent a step toward a better care. The main advantage of signals such as HRV indexes is that it can be calculated
in real time in noninvasive manner, while all current biomarkers used in clinical practice are discrete and imply blood sample
analysis. In this paper HRV linear and nonlinear indexes are reviewed and data from real patients are provided to show how these

indexes might be used in clinical practice.

1. Complexity in Biological Signals

Biological systems are complex systems; particularly, they
are systems that are spatially and temporally complex, built
from a dynamic web of interconnected feedback loops and
marked by interdependence, pleiotropy, and redundancy [1].
The meaning of variability in biological signals was studied
by Goldberger [2]. He proposed that increased regularity,
of signals represents a “decomplexification” of illness. Thus,
health is characterized by “organized variability” and disease
is defined by decomplexification, increased regularity and
reduction in variability. In contrast to the “decomplex-
ification” hypothesis, Vaillancourt and Newell [3] noted
increased complexity and increased approximate entropy
in several disease states and hypothesized that disease may
manifest with increased or decreased complexity, depending
on the underlying dimension of the intrinsic dynamic (e.g.,
oscillating versus fixed point). In addition to the discussion,
Macklem’s studies on asthma as a disease of higher energy
dissipation, greater distance from thermodynamic equilib-
rium, lower entropy, and greater variation [4] suggest that
health is defined by a certain distance from thermodynamic

equilibrium; too close (decreased variation, too little energy
dissipation, low entropy) or too far (increased variation and
energy dissipation, high entropy) each represents pathologi-
cal alterations [5].

The host response to sepsis, shock, or trauma is an
example of a biological complex system that is readily
apparent to intensivists [6]. It is within this complex systems
conception of health and illness that the clinical utility of
variability analysis may be appreciated and should determine
the impact that the variability analysis has on critically ill
patient outcome.

If we look at a modern emergency department (ED) and
intensive care unit (ICU) we can appreciate a continuous
stream of information: parameters derived by multiple
monitors and ventilators, laboratory data, and clinical
documentation. Usually, data are collecting intermittently
but this system is not adequate for tracking and analysis
of complex multivariate relationships. Variability analysis
represents a novel means to evaluate and treat individual
patients, suggesting a shift from epidemiological analytical
investigation to continuous individualized complexity anal-
ysis [7]. Complexity analysis of time series has been widely



used in the study of variability of biological phenomena, as
heart rate [8].

Heart rate is probably the easiest biological, complex,
signal to analyze. Heart rate, recorded as a space between
two heartbeats or as a distance R-R on an surface electro-
cardiogram (ECQG), is irregular if measured in milliseconds.
This kind of variation appeared significant and is related to
physiological (or pathological) conditions. Previous studies
demonstrated a fractal-like complexity pattern in the vari-
ability of heart rate (HRV) which is possible to measure and
quantify. Rapid fluctuation of HRV can reflect changes of
sympathetic and parasympathetic activity; in other words,
HRV is a noninvasive index of the autonomic nervous
system’s control on the heart. Recent studies suggested that
mechanisms involved in the regulation of cardiovascular
system interact with each other in a nonlinear way and
that it is possible to study these mechanisms with several
algorithms. Clinically, patients after an acute myocardial
infarction showed altered HRV indexes values with such
differences correlating to overall mortality [9].

The aim of this paper is to describe different approaches
to HRV quantifications in real patients, all of possible utility
in future clinical practice.

2. Heart Rate Variability Indexes

See references for a clear and exhaustive explanation of different
HRV indexes and their meanings and clinical use [10]. Table 2
shows most used HRV indexes in clinical practice.

2.1. Linear Algorithms. Using linear algorithms, HRV can
be analyzed in time or frequency domain. Time domain
indexes are the first used indexes and simplest way to calculate
HRYV, because they are statistical calculations of consecutive
RR intervals, and they are strictly correlated with each
other (SDNN, SDANN, pNN50, ecc...). Frequency domain
indexes are more elaborated indexes based on spectral
analysis, mostly used to evaluate the contribution on HRV
of autonomic nervous system (VLF, LE, HE, HF/LF ratio).
Spectral analysis can be used to analyze the sequence of
NN intervals of short-term recordings (2 to 5 minutes) or an
entire 24-hour period (i.e., Holter-ECG record).

2.2. Nonlinear Algorithm. Non linear (fractal) indexes [11]
are recently introduced methods to measure HRV, not
affected by nonstationarity, as it happens for linear indexes.
They include Power Law Exponent, Approximate Entropy
and Detrended Fluctuation Analysis. These methods study
all complex interactions of hemodynamic, electrophysiolog-
ical, and humoral variables as well as by the autonomic
and central nervous regulations. These techniques have been
shown to be powerful tools for characterization of various
complex systems, but however no systematic study has been
conducted to investigate large patient populations with the
use of these methods.

Starting from frequency analysis, Power Law Exponent
[12] describes the nature of correlations of single frequencies
in a time series. When equal to 1, it states that the time
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series has similar fluctuations acting at different scales,
regardless of the size of the variation (namely. it is “scale
invariant,” a property of fractals [13]). It has been applied
in biology and medicine formerly to describe the dynamics
of beat-to-beat interval in ageing [8]. Approximate Entropy
(ApEn) [14] provides a measure of the degree of irregularity
or randomness within a series of data. Smaller values
indicate greater regularity, and greater values convey more
randomness and system complexity. It is a rather new index
applied in biological systems signals study and it still needs
implementation.

2.3. Detrended Fluctuation Analysis (DFA). This method has
been developed in order to make a distinction between the
internal variations generated by complex systems and those
variations caused by some environmental-external stimulus
[15]. A singular ECG derivation is recorded continuously
and the R-R distance is calculated in milliseconds until it is
possible to get an amount of 8000 R-R that are necessary to
assure an adequate interval of time. The data’s series have
been integrated and divided into a series of regular intervals
named 1, included between 1 and 300. For each n interval, it
has been calculated the “local” fluctuation as the difference
compared to a straight line of a linear interpolation. Indeed,
the “global” fluctuation has been calculated as the square
root of the average of the local’s fluctuations.

3. Examples of HRV Indexes in Healthy and
Critically Ill Patients

HRV indexes were computed using a digital 12 leads ECG-
Holter machine (Mortara Instruments, USA) in twenty con-
secutive patients admitted to the Intensive Care Unit within
24 hours of admission and in an aged-matched (2: 1 ratio)
control population from consecutive patients presenting to
the ED with nontraumatic, self-limited, chest pain as chief
complain. They were at very low/low/medium risk [16] for
Acute Coronary Syndrome (ACS), and entered in a dedicated
protocol to be screened for silent cardiac ischemia with
serial cardiac enzymes measures (high-sensitivity Troponin
T, Elecsys, Roche, Germany) followed by provocative cardiac
stress test (either treadmill or nuclear stress test). All patients
had to have at least 18 years of age and a baseline 12
leads ECG without diagnostic T-wave or ST-segment devi-
ation suggesting ongoing acute coronary syndrome. Study
protocol was approved by Ethical Committee. ECGs were
manually reviewed and only patients with sinus rhythm at
baseline were eligible for HRV indexes computation. ECG-
Holter data were analyzed by Mortara proprietary software to
obtain RR intervals in milliseconds, then HRV indexes were
manually calculated. Holter data with artifacts or nonsinus
beat more than 10% of total beats number were excluded
from the analysis.

Critically ill patients consisted in a mixed population
treated in the Medical Intensive Care Unit (MICU) and
in the Surgical Intensive Care Unit (SICU). The SICU
group enrolled patients after major heart surgery (coronary
artery bypass graft or valvular replacement) while the MICU
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TaBLE 1: Descriptives. All variables are displayed as mean (standard
deviation) except gender expressed as number (%).

Critically I1l Patients ED Patients

(n = 20) (n = 45)

Age (years) 54 (20) 57 (14)
Gender (Male) 15 (75) 25 (55)
SAPS 38 (17) —
SOFA 6.3 (4.6) —
APACHE II 15(7) —
SBP (mmHg) 132 (23) 140 (23)
DBP (mmHg) 73 (24) 80 (20)
Heart Rate (bpm) 81(19) 80 (19)
SDNN index (ms) 40 (21) 53 (34)
giﬁiﬁ%‘) 0.97 (0.67) 0.84 (0.34)
tLOFt/ I({ri:;;‘“" 0.89 (0.40) 0.85 (0.23)
DFA

Alphal 0.76 (0.43) 0.98 (0.31)

Alpha2 0.99 (0.18) 1.01 (0.09)

ED: emergency Department. SBP: systolic blood pressure. DBP: diastolic
blood pressure. SDNN: standard deviation of the NN intervals. LF: low
frequency. HF: high frequency. DFA: detrended fluctuation analysis.

patients were treated for septic shock (defined as infection in
the setting of high serum lactate and unstable hemodynamic
conditions at presentation). All patients were mechanically
ventilated and under treatment with Propofol.

In a study published in 2005 on Anesthesia Analgesia,
Propofol induces significant decreases in BP, LF, HF, ApEn,
and LF/HF ratio with no change in HR, indicating pre-
dominance of parasympathetic activity during sedation. The
decreased BP with no change in HR indicates that propofol
attenuates the baroreflex reaction [17]. Kanaya et al. [18]
reported that continuous infusion of propofol at a rate of
3 mg/kg/min reduced cardiac parasympathetic tone based on
a decrease in entropy and HF with no significant changes in
LE, LF/HE and HR.

All patients were lying supine and no invasive procedures
were performed during ECG signal acquisition. ECG signal
was sampled at 1 KHz (1000 samples/sec), assuring a good
quality of measurement in a millisecond scale. STATA 11.0
(Stata Corp, TX) was used to compute statistics. Table 1
provides clinical characteristics of the two groups. Figures 1,
2, and 3 show the three most used HRV indexes behaviours
in the two groups.

4. Bridging the Gap: From Research to
Clinical Practice

As clinicians, ED physicians and intensivists are always inter-
ested in predicting patient’s risk of developing major and life-
threatening complications. Such risk models should include
biomarkers of prognostic value. Anticipating clinical course
implies a deep knowledge of the present patient’s state.
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FIGURE 1: Series Standard Deviation (Frequentist Statistics). SDNN
index displayed as mean (circles) and 95% confidential interval
(Bars). Healthy subjects showed a higher degree of dispersion
around the mean (higher variability) compared to critically ill
patients, P = 0.10 using Mann-Witney U-test. ED: Emergency
Department.
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FIGURE 2: Fast Fourier Transform Analysis. Black dots represent
healthy patients and empty squares ICU cases. Dashed and
continuous lines reflect LF/HF ratio after adjusting for other clinical
comorbidities along with 95% confidential intervals (curved lines).
x-axis represents age in years. The two groups did not differ in term
of LF/HF ratio (P = 0.82).

Understanding biological signals behavior might represent a
fundamental step toward a better care. The main advantage
of signals such HRV indexes is that it can be calculated in real
time in noninvasive manner. In fact, all current biomarkers
used in clinical practice are discrete and imply blood sample
analysis.

Although HRV indexes appear to be appealing, fur-
ther research is required. First, nonlinear indexes are not
standardized in terms of data gathering methodology and
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TaBLE 2: Most used HRV measures. (modified from Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and
Clinical Use. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Circulation. 1996;93:1043—

1065).
SDNN Standard deviation of all NN intervals
Time domain SDANN Standard deviation of the averages of NN intervals in all 5-minute segments of the entire recording
indexes RMSSD The square root of the mean of the sum of the squares of differences between adjacent NN intervals
SDNN index = Mean of the standard deviations of all NN intervals for all 5-minute segments of the entire recording
pNN50 NN50 count divided by the total number of all NN intervals
Total power Variance of all NN intervals (<0.4 Hz)
ULF Power in the ULF range (<0.003 Hz)
E requecy VLF Power in the VLF range (0.003-0.04 Hz)
domain indexes LF Power in the LF range (0.04-0.15 Hz)
HF Power in the HF range (0.15-0.4 Hz)
LF/HF Ratio LF [ms?]/HF[ms?]

Linear regression for DFA «l

P =0.02
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FiGure 3: Detrended Fluctuation Analysis (DFA). Black dots
represent healthy patients and empty squares ICU cases. Dashed
and continuous lines reflect predicted values (adjusted for comor-
bidities) for the respective group along with 95% confidential
intervals (curved lines). x-axis represents years. It is to be noted
that DFA index was significantly different between the two groups
even when adjusted for other comorbidities and age (P = 0.02). Age
affects DFA index in both groups.

minimum numbers of R-R intervals needed to have back a
reliable measure. Second, HRV indexes represent the final
outcome of complex systems. For instance, it is known that
diabetes significantly affects final results, along with aging.
All those chronic clinical characteristics are not well studied
and no nomograms exist to simply adjust indexes results for
these covariates. Third, it is not clear how and why different
algorithms behave in different manner. For instance, fast
Fourier analysis was shown to provide information and
was able to discriminate between patients with and without
coronary artery disease, but it seemed not to be the same case
in our example (although sample size is similar in our case
and in previous study [19]).

5. Conclusions

Different pathophysiologic processes alter HRV indexes in
opposite directions, making it difficult to identify them when
present at the same time. For instance, age and diabetes both
decrease DFA index while acute myocardial ischemia seems
to increase it. HRV-indexes future studies should be aimed to
evaluate how HRV is affected by known cardiovascular risk
factors and to find a “standard” of measurement of different
indexes, comparing healthy and ill patients and investigating
their risk of major cardiovascular events.

In conclusion, future larger studies are warranted before
HRYV indexes can be embedded into daily clinical practice as
routine standard of care.
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